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Electric and Magnetic Coupling through Small Apertures
in Shield Walls of Any Thickness

NOEL A. McDONALD

Abstract—A method is presented for evaluating the coupling be-
tween two identical resonant cavities coupled by a small aperturein a
plane common wall of arbitrary thickness. The coupling is related to
the frequencies of the symmetric and asymmetric modes of oscilla-
tion of the coupled cavity structure, and a variational technique is
used to determine those frequencies.

The method is applied to circular and rectangular apertures, and
it is shown that the coupling is separable into electric and magnetic
terms. The results enable theoretical solutions to be obtained for the
electric and magnetic polarizabilities of circular and rectangular
apertures in walls of zero thickness, and equivalent polarizabilities
to be obtained when the wall thickness is nonzero. Curves of numeri-
cal values are given for circular and rectangular apertures. With zero
wall thickness, the results obtained are the same as those of Bethe
for a circular aperture and give good agreement with Cohn’s experi-
mental results for rectangular apertures.

I. INTRODUCTION

HE determination of the field coupled through a

small aperture in a common wall between two re-

gions is important in the design of such items as
waveguide directional couplers and coupled resonator
filters. Bethe [1] investigated the coupling through a
small circular aperture in a conducting plane wall of
zero thickness, and his solution utilizing equivalent elec-
tric and magnetic dipole moments has been extensively
used in the design of coupled cavity and waveguide sys-
tems. Bethe’s method of solution is applicable to small
elliptical apertures as well as to circular apertures, but
not to rectangles or more complicated geometrical fig-
ures. Cohn [2], [3] developed an electrolytic tank
method for measuring the electric and magnetic polar-
izabilities of small apertures of arbitrary shape, and
presented data for a selection of apertures.

The work of Bethe and the experimental results of
Cohn apply to small apertures in walls of zero thickness.
The effect of a finite wall thickness is of ten approximated
by including the attenuation of an evanescent wave-
guide mode traversing the wall thickness [4]-[6].

The evaluation of the coupling through apertures in
plane walls of arbitrary thickness, for apertures of trans-
verse dimensions (i.e., at right angles to the wall thick-
ness) small in wavelengths, is considered here. The aper-
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ture is not close to a corner or other discontinuity, and
the solutions are obtained by making a number of ap-
proximations that are exact in the limit as the aperture
transverse dimensions go to zero. For an aperture in a
wall of finite thickness, the method allows the aperture
to be filled with an arbitrary lossless isotropic material.

Only the case of coupling between two lossless, sym-
metrically oriented, identical resonant cavities is con-
sidered. For other applications the aperture polarizabili-
ties may be used.

A tirne dependence of the form e®? is implied through-
out. The method is presented in outline only. The de-
tails are given in [7].

I1. RELATIONSHIP BETWEEN APERTURE
POLARIZABILITIES AND COEFFICIENT
oF COUPLING

The theory developed originally by Bethe [1] for cir-
cular apertures, and later generalized by Collin [8],
shows that if a field exists on one side of a conducting
plane wall of zero thickness, and a small aperture (aper-
ture dimensions <KA) is then cut in the wall, the field in
the second region is the same as that from an electric
dipole Py normal to the wall and a magnetic dipole M,
tangential to the wall, both at the center of the aperture
with the aperture closed.

Quantitatively, the electric and magnetic dipole
momernts are given by

PO = - 6OPeEn
M, = — puH, 1

where p. and pm are the electric and magnetic polariz-
abilities of the small aperture and E, and H; are the
vector normal electric field and the tangential magnetic
field, respectively, at the aperture location prior to
opening the aperture. The vector normal electric field
E, mav be defined as equal to #(#%- E) where # is a unit
normal vector. It is implicit in (1) that H, is parallel to
a principal axis of the aperture. If this is not the case,
then El; has to be separated into two components each
parallel to a principal axis, and the resultant magnetic
dipole moment obtained from two components.

If the aperture polarizability concept is applied to the
coupling between two lossless, symmetrically oriented,
identical resonant cavities having a common plane wall
of zerc thickness and containing a small aperture, then
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the coefficient of coupling K between the two cavities is
related to the electric and magnetic polarizabilities of
the coupling aperture by

Hpt’Hm Epn‘Epn

K = pn + 2o (
ffpr-dev ffpr'Epd'v

where H, is the predominant magnetic field eigenfunc-
tion in the cavity, E, is the electric field corresponding
to Hy, and Hy; and E,, are the tangential magnetic field
and the vector normal electric field at the aperture loca-
tion corresponding to Hy, and E;, respectively. The nor-
malizing integrations in the denominators of (2) are over
the volume v of one cavity. Equation (2) is a generaliza-
tion of the expression given by Matthaei et al. [9] for
the case of magnetic coupling only.

For a circular aperture of radius R in an infinitely
thin wall, Bethe's results for p, and pnm are

2)

2R3
Pe = 3

and
R3.

Wl

Pm =

ITI. APERTURE IN A WALL OF ARBITRARY THICKNESS
A. The Equivalent Nelwork and its Properties

Two identical resonant cavities coupled by a small
aperture in a plane common wall are shown in Fig. 1.
The interior of each half of the structure is divided into
two regions, a “cavity region” and an “aperture re-
gion,” by a plane surface s.

The aperture region is uniformly filled with a lossless
material with electrical characteristics pou: and e, and
the cavity regions are assumed air filled (i.e., o, €o).

The two cavities coupled by the small aperture will
exhibit the behavior of two lightly coupled identical
resonant circuits, for which a general representation is
given in Fig. 2(a). In Fig. 2(b), the coupling reactance
X, has been separated into two parts.

A coupled cavity structure such as that in Fig. 1 has
two oscillation states for each cavity resonance. One
oscillation state corresponds to an electric wall bound-
ary condition on the symmetry plane in Fig. 1 or a
short circuit on the symmetry line y—y’ of Fig. 2(b). The
other oscillation state corresponds to a magnetic wall
boundary condition on the symmetry plane in Fig. 1or
an open circuit on the symmetry line y—y’ in Fig. 2(b).
The oscillation frequencies of the real structure and the
equivalent circuit must be the same under the corre-
sponding boundary conditions.

It may be shown that the coefficient of coupling K of
the equivalent circuit, and also by analogy of the
coupled cavity resonators, is expressible in the form

2 2
Koo T e 3)

wy? + wo?
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Fig. 1. Two identical cavities coupled by an

aperture in a plane common wall.

(b}

Fig. 2. Network representation of coupled cavities. (a) Single
coupling reactance. (b) Coupling reactance separated into two
parts.

where w; is the angular oscillation frequency in the short-
circuit or electric wall case and w, is the angular oscilla-
tion frequency in the open-circuit or magnetic wall case.
In the determination of the resonant frequencies of the
aperture coupled cavities, only one-half of the structure
need be considered.

B. Variational Determination of the Resonant Frequencies

One of several alternative viewpoints for obtaining a
variational solution for the resonant frequencies is
Rumsey’s “reaction concept” [10]. The method used is
the same in principle for both symmetry plane boundary
conditions.

If the tangential E field on the surface s is postulated
and for both the aperture region and the cavity region
the consequent tangential magnetic fields are deter-
mined as functions of w, then the equation

fj;EXHa-dS=fj;E><Hc~dS 4)

where the subscripts a and ¢ denote the aperture and
cavity regions, respectively, is an implicit variational
equation for the resonant frequency. This is because the
only source necessary to make a self-consistent solution
of Maxwell’s equations is an electric-current sheet on s
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given by J,=#X (H,—H,), and thus (4) is obtained by
equating the self-reaction [f[ E- J dv to zero [11], [12].

In the application of this result, the postulated tan-
gential E field on s contains a number of adjustable am-
plitude coefficients, for which the optimum values are
obtained by the Ritz procedure. Because the E field of a
single mode in a lossless resonant region has everywhere
the same phase, the postulated tangential E on s can be
restricted to real functions. H, and H, will as a conse-
quence be imaginary.

C. Field in the Cavity Region

The magnetic field H, in the cavity region can be ex-
panded in a complete set of orthogonal eigenfunctions of
two types, i.e.,

H,= > hH:+ 2 2G.

where /#; and g; are the amplitude coefficients of the H;
and G; eigenfunctions and the infinite number of H;
functions correspond to the magnetic fields of the nat-
ural modes of oscillation of the region [13], [14].

For H, imaginary, the H; may be taken as imaginary
and the #&; as real. If the H; are normalized according to

mfffvm-mdv = —1 (5)

then with a tangential E specified on the surface s and
zero tangential E on the rest of the boundary of the
cavity region, the amplitude coefficient %; of an arbitrary
H; eigenfunction can be determined as

jo
- [[Exmas ©)

where w, is the resonant {requency corresponding to the
H; eigenfunction.

When a small aperture is cut in the wall between the
two cavities and an electric or magnetic wall is placed on
the symmetry plane, the resonant frequency is moved
very little from the oscillation frequency of the cavity.
Therefore, one of the h;H; terms in the expansion of H,
is strongly dependent on w and is much greater than any
of the other terms. Denoting this predominant eigen-
function by H, with corresponding £, and w,, let

hi=

H, = h,H, + H; )

where the magnetic field H; is the sum of the 4;H; and
g.G; terms other than A H, This “fringing” field H;
exists primarily in the vicinity of the aperture. Then
(6) and (7) can be used to obtain

Jo ?
ffEXHc-d.S‘:— {ffEXHp-dS}
. wy? — w? .

+ffE XIH;-dS.  (8)

An analog of the right side of (8) is the network in Fig. 3,
with the resonant arm corresponding to the predominant
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Fig. 3 Network with resonant arm corresponding to predominant
eigenfunction, and reactance X: corresponding to all other
eigenfunctions.

H, eigenfunction and the reactance X being associated
with H;.

The fringing magnetic field H¢ can in principle be de-
termined from the eigenfunction expansion as an in-
finite series. However, an alternative and simpler ap-
proach is to make a reasonable approximation to the
ffsEfo'dS term. In Fig. 3 the reactance X; is a
slowly varying function of frequency, and it would be
the off-resonance reactance if the contribution of the
particular H, eigenfunction to the off-resonance field
was negligible.

The off-resonance field is a quasi-static field localized
about the small aperture. If it is expanded in a series of
eigenfunctions orthogonal over the cavity volume, then
as the aperture size decreases the field becomes more
localized, more eigenfunctions are required for an ade-
quate representation, and the proportionate contribu-
tion of each particular eigenfunction, such as Hj, be-
comes smaller. This suggests that the reactance X; is
indeed the off-resonance reactance. However, the off-
resonance reactance of a small aperture in a plane cavity
wall not close to other boundary surfaces is essentially
the same as if the wall was infinite in extent.

A suitable approximation for [[,EXH;-dS therefore
is the corresponding quantity for an aperture in an in-
finite plane conducting wall. Then [f,EXH,-dS is
given by (8) with this approximation used to obtain
J[EXH;-dS.

D. Solution for the Coefficient of Coupling K
Equation (8) may be combined with (4) to give
2 2

2
Wp” = w J s

T %t 2 Y
“ ¢ ffeEX(Ha—Hf)-dS

Two frequency shift parameters Sp and S, are now de-
fined as

wp? — wo?

So = Deog? (10)
P (1)
2042
Then, from (3), (10}, and (11),
So— S,
1A S+ S,

As the aperture transverse dimensions go to zero, Sy and
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S, go to zero. Thus
K “')So bt Ss.

Therefore, if the right side of (9) is evaluated by using
the best possible approximation to the true tangential E
field on the surface s, obtained by using a trial field with
a large number of adjustable parameters, then the coeffi-
cient of coupling K is given by the difference between
the values obtained with the magnetic and electric wall
boundary conditions.

If the aperture cross section is of simple shape, such as
circular or rectangular, a suitable and complete set of
trial functions for the tangential E field is a sum of all of
the E fields of the below-cutoff waveguide modes in the
aperture region.

E. Separation of Sy and S; into Independent Parts

Consider the postulated tangential E field on the sur-
face s to be the sum of two terms, e.g., E= El4¢E!
where gisa proportionality coefficient. Then correspond-
ing to E* there will be H ! and H{!, and corresponding to
gE™ there will be ¢H,! and ¢H¢L If such an E field is
used to determine either of the frequency shift param-
eters Sy or S, from (9), then in accordance with the
variational nature of the solution, ¢ is to be adjusted so
that the resonant frequency is stationary with respect to
g. For arbitrary E' and E™ field {unctions, the resultant
expression for .Sy or .S, is dependent on the forms of both
E' and E™. i, however, E' and EY on s together with
their associated magnetic fields satisfy the particular
“independence condition”

fJ:EHX(H.I—HfI)-dS-l-ffsEIX(Han

— H{1).dS=0

and the optimum value of ¢ is determined, it is found
that the result for .Sy or .S; is simply the sum of the two
results that would be obtained by using E' and EM as
separate trial fields. If both Sy and S, are separable in
this manner, then the coefficient of coupling is also
separable into two independent terms. If either of the
two fields can be further subdivided in a manner that
satisfies the independence condition, then the number
of separate contributions is not limited to two.

IV. A SmMaLL CIRCULAR APERTURE
A. General Aspects

A combined Cartesian and cylindrical coordinate sys-
tem x, v, 3, #, 8 is established as shown in Fig. 4, with the
z axis lying on the axis of the aperture region and the
2=0 plane at the surface s separating the aperture re-
gion from the cavity region.

The aperture radius is R and the ratio of (wall thick-
ness)/(aperture radius) is designated Tz. The aperture
region contains a lossless material of relative permeabil-
ity u. and relative permittivity .
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z

Fig. 4. Coordinate system for circular aperture. The z axis is along
the aperture axis and the =0 plane is at the wall surface.

B. Mode Fuelds Contributing to Sy and S,

Of all the possible below-cutoff circular waveguide
modes in the aperture region, it is necessary to deter-
mine which ones are significant in the evaluation of S,
and .S,, and thereby contribute to K. From (9), mode
fields will be significant only if the corresponding
[f: EXH,-dS is nonzero, i.e., if

ff(ETHpo — EoHpT) rdrdf # 0, (12)

The tangential H, field on s is separated into its x and
y components, and each is expanded in a Taylor expan-
sion about the center of s. Only terms up to and includ-
ing first derivatives are retained. A conversion to polar
coordinates gives Hp, and Hye. For TM,,, mode E fields,
(12) is found to be satisfied only if 7=0.

For TE;, mode E fields, (12) is satisfied for /=0, 1,
and 2. However, the contributions of the TEy, and
TE,, mode fields to Sy and S, contain the factor R two
powers higher than do the contributions of the TE,
mode field. As R—0, therefore, the TE modes of sig-
nificance are the TEjy, modes for all .

Because of trigonometric orthogonality, the TMy,
modes and the TE,, modes form separable sets in ac-
cordance with the independence condition of Section
1II-E, and the coefficient of coupling X is the sum of the
results obtained by considering each set separately.

C. TMon Modes in Aperture Region

With a sum of TMy, mode fields, i.e., TMy, TMyg,
TMygs, - - -, with arbitrary amplitude coefficients, first
is determined the fringing field for the aperture in an
infinite plane conducting wall. The procedure is the
same in principle as that given by Harrington for two-
dimensional situations [12, pp. 180-186]. The scalar
potential is expressed as an integral over all possible
solutions of the scalar Helmholtz equation, and this in-
tegral is then interpreted as a Hankel transform. The
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tangential E field components at the aperture are
known, and the scalar potential is thereby defined.

The evaluation of [[,EXH,-dS, i.e., on the aperture
side of s, is carried out using straightforward procedures
for circular waveguide modes. This term is dependent
on the symmetry-plane boundary condition. Thus S,
and S, can be obtained from (9) in terms of H, or its
spatial derivatives. The variational nature of the solu-
tion for the corresponding resonant frequency (wg or w;)
gives a basis for optimizing the mode amplitude coeffi-
cients in each case.

Then the coefficient of coupling K™ due to the T My,
modes is found to be of the form

K™ = —CgpR%[E,.],2

where []. denotes evaluation at the center of s. The
dimensionless coefficient Cg is a function of T and e,
and E, is the electric field corresponding to H,. E,
arises from terms ((0H,,/dx) — (0 H,,/dv)) in the Taylor
expansion of H,, and its normalizing to be consistent

with (5) is
eoffpr'Ep dv = 1.

D. TEy, Modes in Aperture Region

(13)

The procedure with the TEy, modes is similar to that
for the TM,, modes. It is convenient to choose the co-
ordinate system orientation such that [H,.]. is zero, and
the result obtained is of the form

KTE = ——CHRsﬂo[prJG2

in which the dimensionless coefficient Cy is a function of
Tr and y,.

E. Total Coupling

The total coefficient of coupling K is the sum of KT*
and KTE If the squares of the normal E field and the
tangential H field at the center of the surface s, i.e.,
[E,.]o2and [Hy, ]2, are denoted by E, - Epy and Hye - Hp,
respectively, and if the normalizing of E,, and H,, from

(5) and (13) is shown explicitly, then

_ cyps o Her
LR

[ o

— CgR?

Epn-Epn

[ffeei

If (14) is compared with (2), derived from the aper-
ture polarizability viewpoint, it is seen that the concept
of aperture polarizability may for a circular aperture be
extended to the finite wall thickness case if the equiva-

(14)
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Fig. 5. Cgand Cg shown against the thickness parameter Tr
for a small circular air-filled aperture (e =1, ur =

TABLE 1
Number Zero Wall Thickness
o yoi Cu
Modes Direct Extrapolated Direct  Extrapolated
5 0.63693 0.66710 1.2781 1.3330
6 0.64195 0.66689 1.2869 1.3331
7 0.64553 0.66680 1.2933 1.3332
8 0.64820 0.66675 1.2981 1.3333
9 0.65027 0.66672 1.3019 1.3333
10 0.65193 0.66671 1.3050 1.3333
11 0.65328 0.66670 1.3075 1.3333
12 0.65441 0.66669 1.3096 1.3333

lent polarizabilities are obtained from

Pm = CpR?
and

po = —CrR>.

F. Calculation of the Numerical Coefficients Cg and Cy

A maximum of 12 TM,,, and TE,, modes were used
to determine Cr and C, respectively. For the particular
case of zero wall thickness, the results with from 5 to 12
mode fields are shown in the “Direct” columns of Table
I. As the true field has an edge singularity it cannot be
represented exactly by a finite number of mode fields.
However, the convergence of the numerical results can
be improved by a simple polynomial extrapolation tech-
nique, which gives the values in the “Extrapolated”
columns in Table I. Note the excellent agreement be-
tween the values of 0.66669 and 1.3333 for Cg and Cu,
respectively, with the Bethe values of 2/3 and 4/3.

Fig. 5 gives curves of Cy and Cg against the thickness
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parameter T’z for a small circular air-filled aperture.
These curves give the values extrapolated from the 12
mode solutions. For large T, Cg and Cy vary as
e~2Tr gnd e1-%7r, respectively, corresponding to the
attenuations of the least attenuated associated modes,
i.e., the TMy and the TEy. Cy and Cy approach values
about 18 percent and 16 percent less than those ob-
tained from the approximate expressions 2/3 ¢~2-45Tr
and 4/3 ¢-1-34Tr, Thus for thick walls (T'x>0.5), the
equivalent electric and magnetic polarizabilities are
given closely by

be = —0.55R3—2.405Tr
pm 2 1'12R36—1'841TR,

The corresponding asymptotic straight lines are shown
dashed in Fig. 5.

V. A SMALL RECTANGULAR APERTURE

The procedure for a small rectangular aperture in a
plane wall is the same in principle as for a circular aper-
ture. However, the rectangular-aperture case is different
in that as there are two unique principal axes, there are
inherent reference directions. This is of particular sig-
nificance for magnetic coupling. Also, whereas a Hankel
transform is used to determine the fringing field of a
circular aperture, a Fourier transform is used in the rec-
tangular-aperture case.

A rectangular coordinate system is established at the
aperture as shown in Fig. 6. The z=0 plane is at the sur-
face s separating the cavity region from the aperture
region, and the positive z axis is in the direction into the
cavity region. The transverse dimensions of the aperture
are 4 and B, and the aspect ratio B/4 is arbitrary.

The ratio of (wall thickness)/(dimension 4) is desig-
nated T4, and the aperture region is uniformly filled
with a lossless material of relative permeability u. and
relative permittivity e.

Only the results of the analysis are given here. The
coefficient of coupling K of two identical cavities coupled
by a small rectangular aperture of transverse dimensions
A and B in a plane common wall is

H, H, Epn-Eon

d® — Rp4?
[[frme  [[[aza

where the subscript p denotes the predominant mode
field and the integrations are over the volume of one
cavity.

The dimensionless coefficient Ry is associated with
the TE,, mode fields with m odd, and is a function of
the aperture aspect ratio B/ 4, the wall thickness param-
eter T4, and the relative permeability y, of the aperture
region material. The dimensionless coefficient Ry is as-
sociated with the TM,,, mode fields with both m and »
odd, and is a function of the aperture aspect ratio, the

K =R R
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Fig. 6. Coordinate system for rectangular aperture.
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Fig. 7. Ry with zero wall thickness for aspect

ratios in the range 0.05 to 1.0,

wall thickness parameter T4, and the relative permit-
tivity € of the aperture region material.

The equivalent polarizabilities of a small rectangular
aperture are

b = Ru A3
and

Pe = —RE443'

In the determination of Rx and pm, but not Rz and .,
it is implied that the tangential magnetic field H,, is
parallel to the dimension 4 of the aperture.

Note that Rz and Rpg relate to a Rectangular aperture
while Cx and Cg relate to a Circular aperture.

Fig. 7 gives Rg with zero wall thickness for aspect
ratios B/4 in the range 0.03 to 1.0. Also shown in Fig. 7
are Cohn’s [2] experimental values obtained with an
electrolytic tank. Fig. 8 gives Ry with zero wall thick-
ness for aspect ratios from 1.0 to 10.0.

Fig. 9 gives Rg with zero wall thickness for aspect
ratios B/4 up to 1.0. For electric coupling there is
freedom to choose which side of the rectangle is dimen-
sion 4, and therefore Fig. 9 can be used for all aspect
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Fig. 8. Ry with zero wall thickness for aspect
ratios in the range 1.0 to 10.0.
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Fig. 9. Rg with zero wall thickness for aspect ratios up to 1.0

ratios. Cohn’s [3] electrolytic tank experimental values
for Rg are also shown in Fig. 9.

Curves of Rz and Ry against the wall thickness pa-
rameter T4 for air-filled apertures are given in [7] for a
selection of aspect ratios. For large T4, Ry and Ry vary
as ¢ T4 and ¢~ TaVI+W/B? corresponding to the attenua-
tions of the TE;, and TM; modes, respectively.
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VI. CoNCLUSIONS

The coupling through small circular and rectangular
apertures is separable into electric and magnetic terms,
with each type of coupling being associated with a par-
ticular set of waveguide mode fields in the aperture re-
gion. The concept of aperture polarizability can be ex-
tended to include apertures in walls of finite thickness
in addition to the well-established zero wall thickness
case.
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