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Electric and Magnetic Coupling through Small Apertures

in Shield Walls of Any Thickness

NOEL A. McDON.4LD

Absirac&A method is presented for evaluating the coupling be-

tween two identical resonant cavities coupled by a small aperture in a

plane common wall of arbitrary thickness. The coupling is related to

the frequencies of the symmetric and asymmetric modes of oscilla-

tion of the coupled cavity structure, and a variational technique is

used to determine those frequencies.

The method is applied to circular and rectangular apertures, and

it is shown that the coupling is separable into electric and magnetic

terms. The results enable theoretical solutions to be obtained for the

electric and magnetic polarizabilities of circular and rectangular

apertures in walls of zero thickness, and equivalent polarizabilities

to be obtained when the wall tlickness is nonzero. Curves of rmmeri-

cal values are given for circular and rectangular apertures. With zero

wall thickness, the results obtained are the same as those of Bethe

for a circular aperture and give good agreement with Cohn’s experi-

mental results for rectangular apertures.

I. INTRODUCTION

T

H E determination of the field coupled through a

small aperture in a common wall between two re-

gions is important in the design of such items as

waveguide directional couplers and coupled resonator

filters. Elethe [1] investigated the coupling through a

small circular aperture in a conducting plane wall of

zero thickness, and his solution utilizing equivalent elec-

tric and magnetic dipole moments has been extensively

used in the design of coupled cavity and waveguide sys-

tems. Bethe’s method of solution is applicable to small

elliptical apertures as well as to circular apertures, but

not to rectangles or more complicated geometrical fig-

ures. Cohn [2], [3] developed an electrolytic tank

method for measuring the electric and magnetic polar-

izabilities of small apertures of arbitrary shape, and

presented data for a selection of apertures.

The work of Bethe and the experimental results of

Cohn apply to small apertures in walls of zero thickness.

The effect of a finite wall thickness is often approximated

by including the attenuation of an evanescent wave-

guide mode traversing the wall thickness [4]- [6].

The evaluation of the coupling through apertures in

plane walls of arbitrary thickness, for apertures of trans-

verse dimensions (i. e., at right angles to the wall thick-

ness) small in wavelengths, is considered here. The aper-
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ture is not close to a corner or other discontinuity, and

the solutions are obtained by making a number of ap-

proximations that are exact in the limit as the aperture

transverse dimensions go to zero. For an aperture in a

wall of finite thickness, the method allows the aperture

to be filled with an arbitrary lossless isotropic material.

Only the case of coupling between two lossless, sym-

metrically oriented, identical resonant cavities is con-

sidered. For other applications the aperture polarizabili-

ties may be used.

A time dependence of the form ejut is implied through-

out. The method is presented in outline only. The de-

tails are given in [7].

II. RELATIONSHIP BETWEEN APERTURE

POLARIZABILITIES AND COEFFICIENT

OF COUPLING

The theory developed originally by Bethe [1] for cir-

cular apertures, and later generalized by Collin [8],

shows that if a field exists on one side of a conducting

plane wall of zero thickness, and a small aperture (aper-

ture dimensions <<~) is then cut in the wall, the field in

the second region is the same as that from an electric

dipole PO normal to the wall and a magnetic dipole IWO

tangential to the wall, both at the center of the aperture

with the aperture closed.

Quantitatively, the electric and

moments are given by

P. = – eo$.En

MO = – &@~

magnetic dipole

(1)

where p, and pm are the electric and magnetic polariz-

abilities of the small aperture and 1% and Ht are the

vector normal electric field and the tangential magnetic

field, respectively, at the aperture location prior to

opening the aperture. The vector normal electric field

E. may be defined as equal to fi(fi. E) where h is a unit

normal vector. It is implicit in (1) that Ht is parallel to

a principal axis of the aperture. If this is not the case,

then h?t has to be separated into two components each

parallel to a principal axis, and the resultant magnetic

dipole moment obtained from two components.

If the aperture polarizability concept is applied to the

coupling between two lossless, symmetrically oriented,

identical resonant cavities having a common plane wall

of zercl thickness and containing a small aperture, then
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thecoeficient of coupling K between the two cavities is

related to the electric and magnetic polarizabilities of

the coupling aperture by

Hpt “ H., E.n . EPn
K = P. ———— + p.

Su
(2)

H. ~H. dv L(SE.. E. dv
v v

where HP is the predominant magnetic field eigenfunc-

tion in the cavity, EP is the electric field corresponding

to HP, and HP~ and EPn are the tangential magnetic field

and the vector normal electric field at the aperture loca-

tion corresponding to HP and EP, respectively. The nor-

malizing integrations in the denominators of (2) are over

the volume v of one cavity. Equation (2) is a generaliza-

tion of the expression given by Matthaei et u1. [9] for

the case of magnetic coupling only.

For a circular aperture of radius R in an infinitely

thin wall, Bethe’s results for P. and pm are

and

pm = : R3.

III. APERTURE IN A WALL OF ARBITRARY THICKNESS

A. The Equivalent NelwoYk and its Properties

Two identical resonant cavities coupled by a small

aperture in a plane common wall are shown in Fig. 1.

The interior of each half of the structure is divided into

two regions, a “cavity region” and an ‘(aperture re-

gion, ” by a plane surface s.

The aperture region is uniformly filled with a lossless

material with electrical characteristics POP, and eOc,, and

the cavity regions are assumed air filled (i.e., No, eo).

The two cavities coupled by the small aperture will

exhibit the behavior of two lightly coupled identical

resonant circuits, for which a general representation is

given in Fig. 2(a). In Fig. 2(b), the coupling reactance

Xc has been separated into two parts.

A coupled cavity structure such as that in Fig. 1 has

two oscillation states for each cavity resonance. One

oscillation state corresponds to an electric wall bound-

ary condition on the symmetry plane in Fig. 1 or a

short circuit on the symmetry line y–y’ of Fig. 2(b). The

other oscillation state corresponds to a magnetic wall

boundary condition on the symmetry plane in Fig. 1 or

an open circuit on the symmetry line y–y’ in Fig. 2(b).

The oscillation frequencies of the real structure and the

equivalent circuit must be the same under the corre-

sponding boundary conditions.

It may be shown that the coefficient of coupling K of

the equivalent circuit, and also by analogy of the

coupled cavity resonators, is expressible in the form

l-- J

Fig. 1. Two identical cavities coupled by an
aperture in a plane common wall.

xc

(a)

Y

(;;
Fig. 2. Network representation of coupled cavities. (a) Single

coupling reactance. (b) Coupling reactance separated into two
parts.

where U, is the angular oscillation frequency in the short-

circuit or electric wall case and coo is the angular oscilla-

tion frequency in the open-circuit or magnetic wall case.

In the determination of the resonant frequencies of the

aperture coupled cavities, only one-half of the structure

need be considered.

B. Variational Determination of the Resonant Frequencies

One of several alternative viewpoints for obtaining a

variational solution for the resonant frequencies is

Rumsey’s ‘i reaction concept” [10]. The method used is

the same in principle for both symmetry plane boundary

conditions.

If the tangential E field on the surface s is postulated

and for both the aperture region and the cavity

the consequent tangential magnetic fields are

mined as functions of U, then the equation

SsExH8. dS = SsExHc. dS
s s

region

deter-

(4)

where the subscripts a and c denote the aperture and

cavity regions, respectively, is an implicit variational

equation for the resonant frequency. This is because the

only source necessary to make a self-consistent solution

of Maxwell’s equations is an electric-current sheet on s
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given by J,= fiX (Hc –HJ, and thus (4) is obtained by

equating the self-reaction j~$ E. J dv to zero [11], [12].

In the application of this result, the postulated tan-

gential E field on s contains a number of adjustable am-

plitude coefficients, for which the optimum values are
D

obtained by the Ritz procedure. Because the E field of a

single mode in a lossless resonant region has everywhere
Fig. 3 Network with resonant arm corresponding to predominant

the same phase, the postulated tangential E on s can be
eige nf unction, and reactance .Yf corresponding to all other
eigenfunctions.

restricted to real functions. Ha and HC will as a conse-

quence be imaginary. HP eigenfunction and the reactance Xf being associated

C. Field in the Cavity Region

The magnetic field He in the cavity region can be ex-

panded in a complete set of orthogonal eigenfunctions of

two types, i.e.,

H. = ~ h,Hi + ~ gtGz
i i

where IU and gi are the amplitude coefficients of the Hi

and G/ eigenfunctions and the infinite number of Hi

functions correspond to the magnetic fields of the nat-

ural modes of oscillation of the region [13], [14].

For HO imaginary, the Hi may be taken as imaginary

and the hi as real. If the Hi are normalized according to

PO
Sss

Hi. Hidv = –1 (5)
v

then with a tangential E specified on the surface s and

zero tangential E on the rest of the boundary of the

cavity region, the amplitude coefficient hi of an arbitrary

Hi eigenfunction can be determined as

(6)

where w is the resonant frequency corresponding to the

Hi eigenfunction.

When a small aperture is cut in the wall between the

with IYf.

The fringing magnetic field Hf can in principle be de-

termined from the eigenfunction expansion as an in-

finite series. However, an alternative and simpler ap-

proach is to make a reasonable approximation to the

~~,EXHf.dS term. In Fig. 3 the reactance Xf is a

slowly varying function of frequency, and it would be

the ofi-resonance reactance if the contribution of the

particular HP eigenfunction to the off-resonance field

was negligible.

The off-resonance field is a quasi-static field localized

about the small aperture. If it is expanded in a series of

eigenfunctions orthogonal over the cavity volume, then

as the aperture size decreases the field becomes more

localii;ed”, more eigenfunctions are required for an ade-

quate representation, and the proportionate con h-ibu-

tion c)f each particular eigenfunction, such as HP, be-

comes smaller. This suggests that the reactance Xf is

indeefi the off-resonance reactance. However, the off-

resonance reactance of a small aperture in a plane cavity

wall not close to other boundary surfaces is essentially

the same as if the wall was infinite in extent.

A suitable approximation for J$,E X Hf” U therefore

is the corresponding quantity for an aperture in an in-

finite plane conducting wall. Then j~,ExHc .dS is

given by (8) with this approximation used to obtain

JJ,ExH, .ds.

two cavities and an electric or magnetic wall is placed on

the symmetry plane, the resonant frequency is moved
D. Solution for the Coefficient of Coupling K

verv little from the oscillation frequency of the cavity.
Equation (8) may be combined with (4) to give

Th&efore, one of the hiHi terms in the expansion of fic

is strongly dependent on OJand is much greater than any 2 2 - {ffiXHpds}2
of the other terms. Denoting this predominant eigen- fl= = _ --!__

function by Hp with corresponding hP and OJP, let
2U2

20 ffEx(Ha-HJds “ “)

H. = hPHp + Hf (7)
JJ8

Two frequency shift parameters SO and S, are now de-
where the magnetic field Hf is the sum of the hiH~ and fined as

g$Gi terms other than hpHp. This “fringing” field Hf WP2 — 0J02

exists primarily in the vicinity of the aperture. Then so = (lo)

(6) and (7) can be used to obtain
2wo’

CO*2— Coaz

Ss ju {SJ }
2 s, = ——

EXH.. dS= – EXHP. dS 2U,2 “
s

~pz — ~z 8

PP Then,, from (3), (10), and (11),

(11)

+jj~xwrds. (8)
so – s.

8 K=—

An analog of the right side of (8) is the network in Fig. 3,
1+s0+ss

~rith the resonant arm corresponding to the predominant As the aperture transverse dimensions go to zero, SO and
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S.go to zero. Thus

K*So– S..

Therefore, if the right side of (9) is evaluated by using

the best possible approximation to the true tangential E
field on the surfaces, obtained by using a trial field with

a large number of adjustable parameters, then the coeffi-

cient of coupling K is given by the difference between

the values obtained with the magnetic and electric wall

boundary conditions.

If the aperture cross section is of simple shape, such as

circular or rectangular, a suitable and complete set of

trial functions for the tangential E field is a sum of all of

the E fields of the below-cutoff waveguide modes in the

aperture region,

E. Separation of SO and S, into Independent Parts

Consider the postulated tangential E field on the sur-

face s to be the sum of two terms, e.g., E= E1+qE1l
where q is a proportionality coefficient. Then correspond-

ing to W there will be E?ar and ETfI, and corresponding to

qE1l there will be qH~l and qHflr. If such an E field is

used to determine either of the frequency shift param-

eters So or S, from (9), then in accordance with the

variational nature of the solution, q is to be adjusted so

that the resonant frequency is stationary with respect to

q. For arbitrary IY and E1l field functions, the resultant

expression for SO or S, is dependent on the forms of both

E1 and E1l. If, however, E1 and E1l on s together with

their associated magnetic fields satisfy the particular

“independence condition”

H SsE1l X (H: – Hfl) .dS + ~Er X (H:r
s

.- H~9. dS=o

and the optimum value of q is determined, it is found

that the result for So or S. is simply the sum of the two

results that would be obtained by using E1 and E1l as
separate trial fields. If both So and S, are separable in

this manner, then the coefficient of coupling is also

separable into two independent terms. If either of the

two fields can be further subdivided in a manner that

satisfies the independence condition, then the number

of separate contributions is not limited to two.

IV. A SMALL CXRCULAR AFER~URE

A. General Aspects

A combined Cartesian and cylindrical coordinate sys-

tem x, y, z, r, 6 is established as shown in Fig. 4, with the

z axis lying on the axis of the aperture region and the

z = O plane at the surface s separating the aperture re-

gion from the cavity region.

The aperture radius is R and the ratio of (walI thick-

ness)/(aperture radius) is designated TR. The aperture

region contains a lossless material of relative permeabil-

ity pr and relative permittivity e,.

Y

Fig. 4. Coordinate system for circular aperture. The z axis is along
the aperture axis and the z = O plane is at the wall surface.

B. Mode Fields Contributing to So and S8

Of all the possible below-cutoff circular waveguide

modes in the aperture region, it is necessary to deter-

mine which ones are significant in the evaluation of SO

and S,, and thereby contribute to K. From (9), mode

fields will be significant only if the corresponding

~~, EXHP. dS is nonzero, i.e., if

J’s(E,HPO – E@HP,) rdrd~ # O. (12)
8

The tangential H. field on s is separated into its x and

y components, and each is expanded in a Taylor expan-

sion about the center of s. Only terms up to and includ-

ing first derivatives are retained. A conversion to polar

coordinates gives HP, and Ifpe. For TM t~ mode E fields,

(12) is found to be satisfied only if 1= O.

For TEt~ mode E fields, (12) is satisfied for 1= O, 1,

and 2. However, the contributions of the TEo~ and

TE2~ mode fields to SO and S, contain the factor R two

powers higher than do the contributions of the TEl~

mode field. As R~O, therefore, the TE modes of sig-

nificance are the TEI~ modes for all m.

Because of trigonometric orthogonality, the TMo~

modes and the TEl~ modes form separable sets in ac-

cordance with the independence condition of Section

III-E, and the coefficient of coupling K is the sum of the

results obtained by considering each set separately.

C. TMo~ Modes ifl Aperture Region

With a sum of TMO~ mode fields, i.e., TMOI, TMOZ,

TM03, . . ., with arbitrary amplitude coefficients, first

is determined the fringing field for the aperture in an

infinite plane conducting wall, The procedure is the

same in principle as that given by Barrington for two-

dimensional situations [12, pp. 180-186 ]. The scalar

potential is expressed as an integral over all possible

solutions of the scalar Helmholtz equation, and this in-

tegral is then interpreted as a Hankel transform. The
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tangential E field components at the aperture are

known, and the scalar potential is thereby defined.

The evaluation of Jj,EXHa .dS, i.e., on the aperture

side of s, k carried out using straightforward procedures

for circular waveguide modes. This term is dependent

on the symmetry-plane boundary condition. Thus SO
and .S, can be obtained from (9) in terms of HP or its

spatial derivatives. The variational nature of the solu-

tion for the corresponding resonant frequency (co. or co,)

gives a basis for optimizing the mode amplitude coeff-

icients in each case.

Then the coefficient of coupling .KTM due to the TM o~

modes is found to be of the form

where []C denotes evaluation at the center of s. The

dimensionless coefficient CE is a function of TR and e,,

and EP is the electric field corresponding to HP. ED
arises from terms ((dEIPV/13Z) — (dHpz/dy) ) in the Taylor

,, and its normalizing to be consistentexpansion of H
with (5) is

co
Sss

EP. EPdv = 1.
m

(13)

D. TEI~ Modes in Aperture Region

The procedure with the TEl~ modes is similar to that

for the TMO~ modes. It is convenient to choose the co-

ordinate system orientation such that [HI,. ]. is zero, and

the result obtained is of the form

in which the dimensionless coefficient C1{ is a function of

TR and w,.

E. Total Coupling

The total coefficient of coupling K is the sum of KTM

and KTE. If the squares of the normal E field and the

tangential H field at the center of the surface s, i.e.,

[E,,]c’ and [HPV],Z, are denoted by E,. oE,,mand H.+, ~H.*,
respectively, and if the normalizing of Ep. and Hr,i from

(5) and (13) is sho~~n explicitly, then

% ~%t
A“ == c WRa —-——— —

LUHP. HP dv
,,

EPn.EPn
– I&R3 _ —–––– . (14)

SssEP Ep dv
v

If (14) is compared with (2), derived from the aper-

ture polarizability viewpoint, it is seen that the concept

of aperture polarizability may for a circular aperture be

extended to the finite wall thickness case if the equiva-

10.0

E

,o,~
0 ch4 08 12 16 20

TR

Fig, 5, C~ and C~ shown against the thickness parameter Tn
for a small circular air-filled aperture (q= 1, ~,= 1).

TABLE I
—

Nu~ber Zero Wall Thickness
cE CH

Modes Direct Extrapolated Direct Extrapolated

5 0.63693 0.66710 1.2781
6 0.64195

1.3330
0,66689

7
1.2869 1.3331

0.64553 0.66680 1.2933 1.3332
8 0.64820 0.66675 1.2981 1.3333

0.65027 :.:::~ 1.3019
1:

1.3333
0.65193 1.3050

11
1.3333

0.65328 0:66670 1.3075 1.3333
12 0.65441 0.66669 1.3096 1.3333

—

lent polarizabilities are obtained from

P., = CnR3

and

b. = –C.R3.

F. Calculation of the Numerical Coejicients CE and CH

A maximum of 12 TilI~~ and TEl~ modes were used

to determine CE and CH, respectively. For the particular

case of zero wall thickness, the results with from 5 to 12

mode fields are shown in the “Direct” columns of Table

1. As the true field has an edge singularity it cannot be

represented exactly by a finite number of mode fields.

However, the convergence of the numerical results can

be improved by a simple polynomial extrapolation tech-

nique, which gives the values in the “Extrapolated”

columns in Table I. Note the excellent agreement be-

tween the values of 0.66669 and 1.3333 for CE and CH,

respectively, with the Bethe values of 2/3 and 4/3.

Fig. 5 gives curves of CE and CH against the thickness
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parameter TR for a small circular air-filled aperture.

These curves give thevalues extrapolated from the 12

mode solutions. For large TR, CE and CM vary as
~–2.406TR and e–l.@lTR, respectively, corresponding t.O the

attenuations of the least attenuated associated modes,

i.e., the TMOI and the TE1l. cm and CH approach values

about 18 percent and 16 percent less than those ob-

tained from the approximate expressions 2/3 e–z ‘405TE

and 4/3 e–1.841~B. Thus for thick walls (TR > 0.5), the

equivalent electric and magnetic polarizabilities are

given closely by

1%
~ _ 0,55 R8e–2 ,405TR

~ s lolz~8e–1.841TR,P

The corresponding asymptotic straight lines are shown

dashed in Fig. 5.

V. A SMALL RECTANGULAR APERTURE

The procedure for a small rectangular aperture in a

plane wall is the same in principle as for a circular aper-

ture. However, the rectangular-aperture case is different

in that as there are two unique principal axes, there are

inherent reference directions. This is of particular sig-

nificance for magnetic coupling. Also, whereas a Hankel

transform is used to determine the fringing field of a

circular aperture, a Fourier transform is used in the rec-

tangular-aperture case.

A rectangular coordinate system is established at the

aperture as shown in Fig. 6. The z = O plane is at the sur-

face s separating the cavity region from the aperture

region, and the positive z axis is in the direction into the

cavity region. The transverse dimensions of the aperture

are A and B, and the aspect ratio B/A is arbitrary.

The ratio of (wall thickness)/ (dimension A) is desig-

nated TA, and the aperture region is uniformly filled

with a Iossless material of relative permeability p, and

relative permittivity 6,.

Only the results of the analysis are given here. The

coefficient of coupling K of two identical cavities coupled

by a small rectangular aperture of transverse dimensions

A and B in a plane common wall is

Hpti oHDt
K = RH.42 —

EPn.Eon
–R~.43—-

SssH.. HP dv SssEP.E, dv
v v

where the subscript p denotes the predominant mode

field and the integrations are over the volume of one

cavity.

The dimensionless coefficient RE is associated with

the TE~O mode fields with m odd, and is a function of

the aperture aspect ratio B/A, the wall thickness param-

eter TA, and the relative permeability p, of the aperture

region material. The dimensionless coefficient RE is as-

sociated with the TM~ti mode fields with both m and n

odd, and is a fun~tio~ Qf ~h~ aperture aspect ratio, the

Y

I

./

Fig. 6. Coordinate system for rectangular aperture,

030
I
L

0
025

0

Q20-

‘H
0

0.15-

010-

:) O Cohn% Experimental Values
0.05

LI
o Q2 04 0.6 0.8 1.0

B
A

Fig. 7. RH with zero wall thickness for aspect
ratios in the range 0,05 to 1.0,

wall thickness parameter TA, and the relative permit-

tivity e, of the aperture region material.

The equivalent polarizabilities of a small rectangular

aperture are

pm = RHA3.

and

p, = –RBA~.

In the determination of RH and Pm, but not RE and fi.,

it is implied that the tangential magnetic field HP~ is

parallel to the dimension A of the aperture.

Note that RH arid RE relate to a Rectangular aperture

while CH and CE relate to a Circular aperture.

Fig. 7 gives RH with zero wall thickness for aspect

ratios B/A in the range 0.05 to 1.0. Also shown in Fig. 7

are Cohn’s [2] experimental values obtained with an

electrolytic tank. Fig. 8 gives RH with zero wall thick-

ness for aspect ratios from 1.0 to 10.0.

Fig. 9 gives RE with zero wall thickness for aspect

ratios B/A up to 1.0. For electric coupling there is

freedom to choose which side of the rectangle is dimen-

sion A, and therefore Fig. 9 can be used for all aspect
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01 2 4 6 8 10

Fig. 8. l?~with zero wall thickness for aspect
ratios in the range l.Oto 10.0.

0.121

010-

0.08-

‘E

a06 -

004-

002-
0 Cohn% ExpernnentalValws

Fig.9. &with zero wall thickness foraspect ratios uptol.O.

ratios. Cohn’s [3] electrolytic tank experimental values

for R~ are also shown in Fig. 9.

Curves of RE and RH against the wall thickness pa-

rameter TA for air-filled apertures are given in [7] for a

selection of aspect ratios. For large T’A, RH and R~ vary
as ~—VTA and ~–TTA41+WB)2 corresponding to the attenua-

tions of the TE1O and TM1l modes, respectively.

VI. CONCLUSIONS

The coupling through small circular and rectangular

apertures is separable into electric and magnetic terms,

with each type of coupling being associated with a par-

ticular set of waveguide mode fields in the aperture re-

gion. The concept of aperture polarizability can be ex-

tended to include apertures in walls of finite thickness

in addition to the well-established zero wall thickness

case.
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